BWX Technologies

Founded
Country
1867
USA
Website
BWX Technologies
Social
BWX Technologies

Service

Category
Resources - Energy
Nuclear Fission Power
Fields
Nuclear Fission Power
Nuclear Power
Status
Early stage
First launch
?

To reduce the development timeframe and costs for the Mission to Mars, BWXT is working with NASA on an in-space flight demonstration evaluation project. This project will require BWXT to provide important design and testing insight aimed at operating a NTP system in space in the 2020s. BWXT is responsible for initiating conceptual designs for a NTP reactor. These designs will be included as part of the project to evaluate whether the integrated system will function as designed in space and ultimately lead to future systems that are designed to propel a spacecraft from Earth's orbit to Mars and back. The NTP project seeks to dramatically decrease travel time to and from Mars, while increasing payload size due to a lighter-sized aircraft. Compared to its chemical counterpart, a nuclear thermal rocket possesses twice the propulsion efficiency due to its high-thrust engine and ability to accelerate propellant at high speeds. Given NTP’s advantages over traditional chemical propulsion systems, NASA estimates the technology will reduce transit to the Red Planet from six months to four. In 1987, BWXT received a contract to design a space nuclear thermal propulsion (SNTP) system in support of the U.S. Department of Defense’s SNTP program. The program sought to develop a lighter and smaller second-generation, PBR-based nuclear rocket. While the program ceased at the end of the Cold War in 1993, the PBR was extensively tested and validated, signaling a giant leap forward in the size reduction of NTP engines. The solar system’s largest planet became the subject of potential exploration in 2003, as BWXT supported development of a reactor plant for the Jupiter Icy Moons Orbiter (JIMO) under Project Prometheus. Before its cancellation in 2005, the mission sought to utilize nuclear power and propulsion technologies to explore the subsurface oceans of Jupiter’s three ice-covered moons. Although previous nuclear propulsion concepts relied on high-enriched uranium, BWXT’s latest design utilizes low-enriched uranium-based fuel. In addition to determining the feasibility of using low-enriched fuel, the NTP project will also test and refine the manufacturing of the system’s fuel elements throughout the next year.

Similar

Resources - Energy, Nuclear Fission Power

AGPower92

Early stage

Resources - Energy

Extra Terrestrial Power

Concept

Resources - Energy, Space Tug, Nuclear Fusion Power

HelicitySpace

Early stage

SPRINT, SPEAR

Resources - Energy, Nuclear Radioisotope Power, Solar Thermal Propulsion, Active Debris Removal (ADR)

Howe Industries

In development

Resources - Energy

Ion Power Group

Idea

Resources - Energy

Lumi Space

Early stage

Resources - Energy

Lunar Night Survival

Concept, Dormant

In-Space Manufacturing, Resources - Energy

Lunar Resources

Early stage

Resources - Energy, Resources - Oxygen, ISRU (In Situ Resource Utilization)

Maana Electric

In development

Resources - Energy

Photonicity

Early stage

Resources - Energy

Regher Solar

In development

Resources - Energy

Satellite Squared

Early stage

Resources - Energy

Solar.Space

Idea, Dormant

Pylon

Resources - Energy, Nuclear Fission Power

Ultra Safe Nuclear Corporation (UNSC)

In development

Resources - Energy, Power Beaming

XISP (Xtraordinary Innovative Space Partnerships)

Early stage

Resources - Energy, Nuclear Radioisotope Power

Zeno Power Systems

In development

Resources - Energy, Nuclear Fission Power

AGPower92

Early stage

Pylon

Resources - Energy, Nuclear Fission Power

Ultra Safe Nuclear Corporation (UNSC)

In development