Space Farming

Grow fresh food for astronauts and tourists thanks to farming in space. Farming in space, space farming.

Last updated: 2019-01-20

Status

Lots of experiments performed and planned and small quantities tasted. Large-scale production methods have not been built and demonstrated.

Applications

  • Fresh food for long term space missions.
  • Psychological effect from surrounding plants and greenery.
  • Microgravity enhanced genetic plant engineering for Earth.
  • Year-round self-contained crop growing systems for Earth.

Why & Solution

Space gardening will be essential someday if space travelers are to go beyond low-Earth orbit or make more than a quick trip to the moon. They can’t carry on all the food they need, and the rations they do bring will lose nutrients. So astronauts will need a replenishable stash, with extra vitamins. They’ll also require ways to make more oxygen, recycle waste, and help them not miss home so much. Space gardens can, theoretically, help accomplish all of that. 2

In order to improve astronauts’ well being on long-duration missions such as on a Moon base or on a mission to Mars, food plays an essential key role. Besides a source for nutrition, fresh food evokes through all the senses of smell, touch and taste memories of general happiness and home. 1

The movement of heat, water vapor, CO2 and O2 between plant surfaces and their environment is also affected by gravity. In microgravity, these processes may also be affected by reduced mass transport and thicker boundary layers around plant organs caused by the absence of buoyancy dependent convective transport. Future space farmers will have to adapt their practices to accommodate microgravity, high and low extremes in ambient temperatures, reduced atmospheric pressures, atmospheres containing high volatile organic carbon contents, and elevated to super-elevated CO2 concentrations. Farming in space must also be carried out within power-, volume-, and mass-limited life support systems and must share resources with manned crews. 3

Veggie and other systems aboard the space station are helping researchers figure out how radiation and lack of gravity affect plants, how much water is Goldilocks-good, and how to deal with deplorables like mold. Just as important, scientists are learning how much work astronauts have to put in, how much work they want to put in, and how plants nourish their brains as well as their bodies. 2

Microgravity enhanced genetic plant engineering. In the low gravity environment of space, the transfer of genetic information from one kind of plant to another is enhanced due to lack of gravity induced buoyancy and convection effects. 5

References