Manufacturing large structures in space like space stations and space telescopes. Could be also called 3D printing, additive manufacturing, in-space assembly or in-space construction.
Updated: 2023-03-12
Created: 2018-11-01
Status
Multiple entities are developing prototypes.
Applications
- Space stations
- Solar arrays
- Space telescopes
- Space antennas, reflectors, radars
- Very long booms and shields
- Moon and Mars surface bases
- Space-based solar power
Why & Solution
Satellites and most space structures have been designed to fit into launcher fairing and to survive the launch environment. In other words, they are inefficient in terms of mass and volume or complicated deployable systems. Manufacturing or atl east assembling many structures in space could mean they can be much lighter, weaker and larger.
Archinaut from Made In Space is a technology platform that enables autonomous manufacture and assembly of spacecraft systems on orbit. Archinaut enables a wide range of in-space manufacturing and assembly capabilities by combining space-proven robotic manipulation with additive manufacturing demonstrated on the International Space Station (ISS) and in terrestrial laboratories. An initial version of Archinaut is the Optimast™ boom manufacturing system. Optimast systems can be integrated into commercial satellites to produce large, space-optimized booms at a fraction of the cost of current deployables. Other implementations of Archinaut enable in-space production and assembly of backbone structures for large telescopes, repair, augmentation, or repurposing of existing spacecraft, and unmanned assembly of new space stations. Spacecraft leveraging Archinaut are optimized for the space environment rather than the launch environment, enabling significantly more capable systems produced at lower costs as required for today’s commercial markets and NASA’s future mission needs.1
Tethers Unlimited (Firmamentum) is developing a revolutionary suite of technologies called "SpiderFab" to enable on-orbit fabrication of large spacecraft components such as antennas, solar panels, trusses, and other multifunctional structures. The primary benefit of this on-orbit fabrication capability will be order-of-magnitude improvements in packing efficiency and system mass, which will enable NASA to use small, low-cost launch vehicles to deploy systems dramatically larger than possible with current state-of-the-art technologies. Technologies range from prototype space-based 3-D printer called FabLab and the Trusselator, a device to create lengthy carbon composite structures in orbit. Space Systems Loral hired Firmamentum to demonstrate how a small satellite could use the Trusselator to extend the distance between its antennas, sensors or solar arrays. For the U.S. Defense Advanced Research Projects Agency, Firmamentum is developing OrbWeaver, a small satellite to ride into orbit on an Evolved Expendable Launch Vehicle Secondary Payload Adapter ring, chew up the ring and turn the pieces into a satellite antenna. 4
Companies
AI Spacefactory page at Factories in Space
Makers of smart buildings, 3D printed constructs, and off-world habitats.
Starting October 2022, SpaceFactory launched our first (terrestrial) commercial 3D printer, ASTRA. Building on the prototype developed for the NASA Centennial Challenge, SpaceFactory engineered ASTRA for scale, autonomy, and sustainability. Designed as a full-stack solution including material handling, ASTRA is a fraction of the price of comparable gantry style 3D printers. By reducing cost and technical barrier-to-entry, ASTRA’s mission is to enable the next generation of builders and creators.
LINA - BUILDING ON THE MOON
Unlike conventional 3D prints, where layers are parallel to the ground, LINA will be 3D printed at a 60-degree angle to construct the continuous, vaulted roof. A regolith berm, prepared in advance, functions as an inclined print bed to support the initial layers. To prevent warping as the material cools, and to improve adhesion of the 3D print material to the regolith print bed, reusable metal tiebacks will be inserted into the berm to anchor the first layers. As the roof begins to take shape, a mobile excavator will follow behind the 3D print head to cover LINA with a protective regolith overburden. Finally, the regolith overburden is shaped to give LINA a sleek, yet symbiotic form designed to meld into the lunar landscape.
To construct LINA, SpaceFactory is advancing the development of a Space-rated 3D printing system designed to operate in vacuum with temperatures ranging from -170º to 70ºC. The first such prototype, built by SpaceFactory together with NASA, is undergoing testing at Kennedy Space Center in a lunar environmental chamber designed to mimic the exact conditions at the Lunar south pole. The 3D print material, formulated by SpaceFactory from BP-1 lunar simulant, was synthesized by NASA’s Granular Mechanics and Regolith Operations Lab and subsequently validated in static extrusion tests performed in vacuum.
MARSHA - BUILDING A MARS HABITAT
In an alien environment 54.6 million kilometers away, construction and materials must be rethought entirely.
Architecture on Earth plays a critical role in the way we live. On Mars, this reaches a higher level of importance since buildings are also machines we depend on to keep us alive and well. In Space architecture, every design decision is of great consequence to the success of a mission. Structures must be resilient and interior layouts must be tuned to mission demands. And yet, since sustained social and mental health are also mission-critical, Space habitats must be designed to be rich, useful, and interesting worlds onto themselves. Marsha, AI SpaceFactory’s Mars habitat design, illustrates that the result can be both visionary and credible with an alien yet familiar beauty.
MARSHA employs a unique dual-shell scheme to isolate the habitable spaces from the structural stresses brought on by Mars’s extreme temperature swings. This separation makes the interior environment unbeholden to the conservativism required of the outer shell, which retains its simple and effective form. As a result, the interior is free to be designed in the sense we take for granted on Earth – around human needs.
Airbus page at Factories in Space
Additive Manufacturing
Metal3D, developed by Airbus for the European Space Agency (ESA), is a real game changer. It uses metal as source material and prints it at 1,200 degrees Celsius to produce new parts such as radiation shields, tooling or equipment directly in orbit. Future versions of the 3D printer could also use materials such as regolith (moondust), or recycled parts from decommissioned satellites.
In-Space Assembly
The European aerospace giant Airbus has commenced the study phase of a factory for assembling an antenna and a satellite in earth’s orbit. Consisting of two robotic arms, a demonstrator of this concept is expected to be functional by as early as 2025. An industrial team is also working on developing a 3D printer for the International Space Station. Through the Horizon 2020 Program, Airbus will lead the PERASPERA In-Orbit Demonstration, or PERIOD project, focusing on building spacecraft while orbiting the Earth.
Anisoprint page at Factories in Space
Composite fiber 3D printing in close-to-zero gravity conditions.
On site manufacturing minimizes delivery cost and shape limitations, it also reduces the number of delivery missions. The patented Anisoprint CFC technology creates zero waste which is environmentally efficient and does not increase the amount of space debris. In addition, it is fully automated manufacturing that does not require manual labor.
Astroport Space Technologies (XArc, Exploration Architecture) page at Factories in Space
- Astroport and its research partner, The University of Texas at San Antonio (UTSA), will develop geotechnical engineering processes for "Lunar Surface Site Preparation for Landing/Launch Pad and Blast Shield Construction" with a focus on "regolith works" for bulk regolith excavation and movement. The project will build on Astroport's previous Phase 1 STTR-21 work on regolith melting technologies and robotic bricklaying system for lunar infrastructure construction.
- The new research will describe a multi-step Concept of Operations (CONOPS) for "regolith works" executed by multiple machines operating autonomously or in remote control mode with step sequencing/timing to enable machine-to-machine collaboration. In particular, it will define conveyance techniques and sorting and filtering processes to prepare and deliver excavated regolith to Astroport's Lunatron™ bricklayer system.
- Astroport is developing patent-pending technology to melt lunar soil (regolith) to form durable lunar bricks using its LunatronTM brick-making machine. These bricks can then be used as a coating for flat surfaces such as airstrips, roads or the foundations of structures. Astroport has received separate research funding for the development of its in-furnace smelting technology, The regolithic raw material for the manufacture of bricks is acquired during the excavation and leveling phase for the preparation of the landing site.
- For this, FourPoint will use its Autonomous Transport Platform (ATP) for the transport and delivery of sorted and filtered materials that will feed the LunatronTM brickyard. FourPoint's ATP offers a complete solution for autonomous machine operation, suitable for work in specific areas, which improves the speed and efficiency of work in surface mines, as well as other extreme environments. such as the lunar surface.
Automated Dynamics page at Factories in Space
SBIR Phase I in 2015: A laser heating system (LHS) for the automated fiber placement (AFP) of thermoplastic composites (TPC) has recently been developed by Automated Dynamics to technology readiness level (TRL) three.
Awake Aerospace page at Factories in Space
Make the inner solar system more accessible.
- Agriculture, mining, tourism, manufacturing and long-term human habitation.
- With a keen focus on Venus and enabling O'Neill structures.
- Help develop and exercise ability in order to dynamically scale the operations (if and when needed).
- Assist global military operations with mega-engineering projects. Including but not limited to: Asteroid defense (deflect/attack/other) system, shielding from a potential solar storm. As well, help develop safeguard against other larger scale (potential) disruptions.
BAE Systems page at Factories in Space
SMARTER - Space Manufacturing, Assembly and Repair Technology Exploration and Realisation
- The project will focus on how reconfigurable autonomous robotic technologies can be used to automatically manufacture components, assemble large structures, and service or repair existing space assets. The SMARTER concept, i.e. a manufacturing factory in space, could ultimately lower launch costs, the exploration of space and improve mission sustainability i.e. extend the useful life of assets launched into space.
- "Manufacturing in space has the potential to positively affect human spaceflight operations by enabling the in-orbit manufacture of replacement parts and tools, which could reduce existing logistics requirements for the International Space Station (ISS) and future long-duration human space missions. In-space manufacturing could enable space-based construction of large structures and, perhaps someday, in the future, entire spacecraft. In-space manufacturing can also help to reimagine a new space architecture that is not constrained by the design and manufacturing confines of gravity, current manufacturing processes, and launch-related structural stresses.
- Funded Value: £513 346.
- Funded Period: January 2018 - June 2020.
- Funder: Innovate UK.
Cislune page at Factories in Space
Developing technology to accelerate humanity living on the Moon.
Cislune is proud to be 1 of 13 US teams to win Level 1 of the NASA's Break the Ice Lunar Challenge.
Cislune Regolith Pathways and Landing Pads
- Cislune and UCF propose a site preparation architecture that relies upon in-situ resources and a small number of rovers and excavators working as a swarm to build durable lunar surfaces with size-sorted and then compacted lunar regolith. Efficient manipulation of bulk regolith via size-sorting and compaction is the most efficient architecture for lunar site preparation. We will test compaction techniques on various combinations of regolith simulant size fractions to determine the maximum strength available from compressed regolith. We will also do PSI and CFD modeling to determine requirements for landing spacecraft to determine where compressed regolith can be used.
- Site preparation will be required on the Moon and Mars as landing sites are developed for robotic and human missions. NASA is considering the lunar South Pole of the Moon with PSR’s for water ice, peaks of eternal light for power and heat, and continuous line-of-sight to the Earth for communications which will make it the focus of intensive and repeated robotic and human operations. Crew safety is significantly improved with landing pads and a reduction in ejecta.
Surface Construction - High Efficiency Sintering via Beneficiation of the Building Material
- We propose a construction system that magnetically beneficiates the soil to create a layered surface then sinters it relying on antenna near-field energy absorbance. The layering will consist of a highly microwave-susceptible, highly thermal-conductive top layer, on top of a poorly microwave-susceptible, poorly thermal-conductive sublayer. The antenna system will be optimized for magnetically dominant or electrically dominant reactive near fields as required for maximum absorbance in the beneficiated top layer. These innovations will ensure microwave energy is maximally deposited into the upper, sintering region with minimal deposition below that layer, and that it is maximally retained in that region rather than conducting deeper in the soil where temperatures do not reach sintering levels.
- The system will also use multiple wavelengths corresponding to the changing absorbance of lunar soil as a function of temperature during the heating process. The entire system (excavating, beneficiating, laying and compacting layers, and sintering) can be packaged onto a single robot for single-pass construction of landing pads and roads, or these functions can be separated into distinct excavation, beneficiation, and construction machines for larger-scale efficiency in future operations. This system will save the exploration program hundreds of millions (potentially billions) of dollars by reducing sintering energy by a factor of 2 or more, recouping the gigantic time-value of the lunar surface power systems.
- NASA can use this system to build landing pads, roads, and regolith shields over outposts on the lunar surface. Since lander blast mitigation is a major problem, there is high probability of using this system early in a lunar surface program.
HRL Laboratories page at Factories in Space
- The NOM4D program seeks to create a disruptive change in the way future space structures, such as orbital power stations or large radio frequency (RF) apertures with 100 meter diameter, are made. If successful, the extremely low energy structural forming and joining techniques developed under this program will enable much larger, more efficient structures than are possible today.
- To do this, NOM4D teams are tasked with foundational proofs of concept in materials science, manufacturing, and design technologies. These prototype structures will show a path to overcome the size constraint of launch vehicle fairings and limited in-orbit power for forming and joining of large space structures.
- Current large space structures, such as the James Webb Space Telescope, rely on deployable technology – mechanized structures that can fold, roll, or inflate – that are stowed prior to launch in a compact package and then deployed after launch to full size. “By forming materials to their final shape in space, we dispense with added structural mass needed to meet launch requirements,” said Dr. Christopher Henry, HRL’s Principal Investigator on NOM4D.
- “HRL’s HYDRIde Forming for ORbital Manufacturing (HYDRIFORM) approach leverages HRL’s multi-disciplinary capabilities, together with our team L’Garde Inc. and ALLVAR, to develop a novel in space manufacturing concept that is both size and power efficient for fabrication yet pushes the bounds of efficient space structures,” said Dr. Henry.
- HRL will demonstrate the key elements to achieve structures that can be built up from energy efficient structural members that are both formed and joined in space. These elements are: mass and power efficient forming of metallic members; and joining of metallic members in a lightweight, yet durable manner. “Both of these assembly operations have not really been explored previously and would form the basis for the ability to manufacture an arbitrarily large spacecraft structure,” adds Brian Hempe, HRL’s Lead Development Engineer.
- Ceramic Additive Manufacturing has been demonstrated for the first time on the International Space Station using HRL’s Pre-ceramic Resin.
- The structural parts of space infrastructure, such as solar arrays, telescopes and satellites, are currently designed to withstand the high loads at launch and end up with significant parasitic mass once deployed in space. Additive manufacturing in space could reduce by a large factor the amount of material launched to build space infrastructure. 3D printing ceramic materials is especially interesting for these applications, since ceramics are much more resistant to radiation exposure and extreme temperatures than polymers, and easier to print than lightweight metals.
ICON page at Factories in Space
- The nearly $60 million contract builds upon previous NASA and Department of Defense funding for ICON’s Project Olympus to research and develop space-based construction systems to support planned exploration of the Moon and beyond.
- ICON’s Olympus system is intended to be a multi-purpose construction system primarily using local Lunar and Martian resources as building materials to further the efforts of NASA as well as commercial organizations to establish a sustained lunar presence.
- In support of NASA’s Artemis program, ICON plans to bring its advanced hardware and software into space via a lunar gravity simulation flight.
- ICON also intends to work with lunar regolith samples brought back from Apollo missions and various regolith simulants to determine their mechanical behavior in simulated lunar gravity.
LodeStar page at Factories in Space
Building the structures in space that will save us here on Earth.
Earth
Building the structures in space that will save us here on earth. Our approach will unlock cheaper & more capable pressure vessels in orbit while paving the way for the future of deep space exploration.
Moon
Unlocking lunar colonisation though automated habitat construction. Our approach will unlock cheaper & more capable pressure vessels in orbit while paving the way for the future of deep space exploration.
Lunar Resources page at Factories in Space
Creating break-through technologies to facilitate the large-scale commercialization of the Moon.
Rhea Space Activity (RSA) and its partner Lunar Resources pitched to the Air Force a concept to deploy two spacecraft to manufacture a large mirror in space. The mirror would be installed, in orbit, into a telescope that would be used to detect hypersonic vehicles. Lunar Resources is an in-space manufacturing company that helped RSA develop the concept for how to construct a very large EO/IR mirror in space. One of the payloads would “spray paint” the optical coatings needed to make the EO/IR mirror on a small satellite dubbed Ruby Sky. At the Space Pitch Day event, the Air Force awarded Lunar Resources a $750,000 Small Business Innovation Research (SBIR) Phase 2 contract, with RSA as a subcontractor, to get the project moving.
The DSTAR Communications team includes partners FOMS of San Diego, California, Visioneering Space of Boise, Idaho, and Lunar Resources of Houston.
Magna Parva (Kleos Space, In-Space Manufacturing) page at Factories in Space
Conducting a six-month test in 2021 of technology for in-space manufacturing of large 3D carbon fiber structures that could be used to construct solar arrays, star shades and interferometry antennas. Kleos has been designing and developing in-space manufacturing technology called Futrism to robotically produce a carbon-fiber I-beam with embedded fiber-optic cables that is more than 100 meters long.
In-Space Manufacturing (Kleos Space, Magna Parva) has developed a patented in-Space manufacturing system that will provide a method of producing huge carbon composite 3D structures in space. A prototype system has been successfully built and tested under ‘near space’ conditions at our development facility. It demonstrates the potential for the production of assemblies, equipment or even buildings from fully cured and consolidated carbon fibre materials, potentially miles in length. Patented (GB2500786B) precision robotic technology manufactures 3D space structures using a supply of carbon fibres and a resin that are processed by pultrusion through a heat forming die in a continuous process, producing cured carbon composite elements of extraordinary length that also encompass intelligent elements such as sensors, fibre optics or wiring. As the resin and materials behave differently in space, the development has included testing under both ambient atmospheric and vacuum conditions. While pultrusion itself is an established manufacturing process, it has now been scaled down to a size where the equipment can be accommodated on spacecraft, and further work is under way to advance the technical readiness of the concept. Manufacturing speed of prototype system is 1mm/s, equating to 1 mile of structure per 18 days.
Maxar (SSL) page at Factories in Space
Involvement in NASA’s Restore-L mission to refuel the almost 20-year-old Landsat-7 satellite.
Maxar Technologies’ Space Systems Loral division terminated an agreement to build DARPA’s Robotic Servicing of Geosynchronous Satellites spacecraft Jan. 30, leading to a potential recompete of the program.
On-orbit satellite assembly - Spider
On-orbit satellite servicing - OSAM-1
In-space transportation - Power and propulsion element
The first component for the NASA-led Gateway, a lunar orbiting module, will be the Maxar-built Power and Propulsion Element. This element will power the Gateway, maintain its position, and enable critical communications, which will support human missions on the moon and to Mars in the future.
Maxar is designing the Power Propulsion Element to host a variety of external interfaces for future docking, robotics and science payloads.
Space exploration - SAMPLR
Nanoracks page at Factories in Space
Nanoracks is the leading provider of commercial access to space with a global customer base
In-Space Manufacturing
Nanoracks just made space construction and manufacturing history with the first demonstration of cutting metal in orbit.
Outpost Mars Demo-1
Voyager and Nanoracks are excited to announce that our first Outpost demonstration mission (Outpost Mars Demo-1) is expected to launch this month aboard SpaceX’s Transporter 5 rideshare flight. This mission is part of our Outpost Program, which is focused on transforming used launch vehicle upper stages into uncrewed, controllable platforms. Nanoracks designed a self-contained hosted payload platform to demonstrate on-orbit, debris-free, robotic metal cutting.
- Our partner in this demonstration, Maxar Technologies, developed a new robotic arm with a friction milling end-effector. Friction milling uses a cutting tool operating at high rotations per minute to melt the metal in such a way that a cut is made, and no debris is generated. Maxar’s robotic cutter is equipped with thermal sensors and cameras, and once in space,
- Nanoracks and Maxar will have up to one hour to complete the cutting of three metal pieces, made of corrosion resistant steel (the same material that is used on the outer shell of ULA’s Vulcan Centaur) without creating any debris in the process. The demonstration itself will occur about 9 minutes into flight and will be finished approximately 10 minutes later. The rest of the time the team will downlink the photos and video to the ground stations until the vehicle and hosted payloads de-orbit over the Pacific.
- The experiment was performed back in May by Nanoracks and its parent company Voyager Space, after getting to orbit aboard the SpaceX Transporter 5 launch. The company only recently released additional details on Friday.
- The goal of Outpost Mars Demo-1 mission was to cut a piece of corrosion-resistant metal, similar to the outer shell of United Launch Alliance’s Vulcan Centaur and common in space debris, using a technique called friction milling.
- It was conducted in partnership with Maxar Technologies, who developed the robotic arm that executed the cut. That arm used a commercially available friction milling end effector, and the entire structure was contained in the Outpost spacecraft to ensure that no debris escaped. Indeed, one of the main goals of the demonstration was to produce no debris — and it worked.
- Using a technique called friction milling, the robotic arm used a commercial cutting tool at a high speed to soften the metal while cutting it and reducing debris. The enclosure that held the robotic arm and metal samples was on a Nanoracks circuit.
OffWorld page at Factories in Space
We are developing a robotic workforce for heavy industrial jobs on Earth, Moon, asteroids & Mars.
OffWorld Robotic Lunar Mining CONOPS for NASA Break the Ice Challenge 2021.
OHB page at Factories in Space
The systems specialist OHB System AG is one of the leading independent forces in European space.
Additive Manufacturing
Starting in 2014, both OHB Systems and BEEVERYCREATIVE participated in a consortium to pursue the Manufacturing of Experimental Layer Technology (MELT) project for ESA. The goal of this project was to design a fully functional AM breadboard model that could work in microgravity environments and use engineering polymers such as PEEK. In May 2018, the MELT 3D printer prototype was delivered to ESA, which became Europe’s first 3D printer for space.
IMPERIAL Additive Manufacturing Project
Opterus page at Factories in Space
Developing Tubular Truss Additive Manufacturing (TTAM) for mass efficient truss structures manufactured in space. Our Tensioned Precision Structures (TPS) offer new design paradigms for in-space manufacturing of large space structures.
Tubular Truss Additive Manufacturing (TTAM)
- they achieve the form of a truss of thin-walled tubes, which is the most structurally efficiency form and
- they use the highest performance materials, carbon fiber composites.
Tensioned Precision Structures (TPS)
Orbital Assembly (Gateway Foundation) page at Factories in Space
Our long term goal is to create a powerful space construction industry able to complete any sized projects ranging from LEO to lunar orbit. Orbital Assembly will become a buyer of space construction equipment from engineering firms all over the world producing machines and tools designed for Space: Fabrication, Assembly and Construction (FAC).
In 2021, announced the opening of its new production facility in Fontana, California that will develop the technologies and structures to build the world’s first space hotel with lunar levels of gravity between the Earth and the moon. The company is progressing towards its first mission launch deadline scheduled for 2023 and will begin a new round of financing in May 2021 via Net Capital to raise $7 million.
- Over the last three years, Orbital Assembly completed schematic design of the Voyager-class™ station and Pioneer-class™ space platforms, and the OASIS™ habitation module. The company has signed agreements with dozens of partners, vendors, and future customers.
- The company is also pursuing a number of Small Business Administration projects (SBIR) with multiple agencies in the Department of Defense.
- Orbital Assembly offers consulting services to assist these customers in preparing for use of our orbital assets and fly payload on the first Pioneer-class station, with planned initial operation within 30 months contingent on funding.
- The Pioneer-class Station will be our first free-flying space craft and accommodate up to 54 people. This hybrid-gravity space station, used for commercial operations, is designed for variable artificial gravity operation, providing the opportunity for long term habitation.
Redwire (Made in Space) page at Factories in Space
3D Printer - Additive Manufacturing Facility
Made in Space pioneered manufacturing capabilities in space with its first- and second-generation 3D printers, with on-orbit operations dating back to 2014.
- AMF is our flagship technology onboard the ISS and its versatility and durability have made it a reliable resource for government and commercial customers since its activation in 2016.
- It has produced over 200 tools, assets, and parts in orbit. AMF’s legacy has been the foundation for our technology roadmap and manufacturing programs as Made In Space develops new capabilities that will leverage additive manufacturing in space for unprecedented applications.
- RRP is a technology demonstration mission, developed in partnership with NASA’s Marshall Space Flight Center.
- The mission will demonstrate autonomous, on-orbit 3D printing with regolith feedstock material using Redwire’s Additive Manufacturing Facility currently aboard the ISS.
- Redwire will launch three custom-design 3D printing heads and three print bed surfaces on NG-16 to support RRP’s on-orbit operations.
Redwire (Made in Space) page at Factories in Space
OSAM-2 (Archinaut One)
The OSAM-2 mission will demonstrate in-space manufacturing capabilities that could revolutionize the space infrastructure landscape in low-Earth orbit and beyond.” The CDR marks the end of the design phase for the On-Orbit Servicing, Assembly and Manufacturing 2 (OSAM-2) mission and the beginning of the process of building and verifying flight hardware.
- OSAM-2, also known as Archinaut One, is a $73.7 million contract between Redwire and NASA signed in 2019. OSAM-2 is a technology demonstration mission funded by NASA’s Space Technology Mission Directorate and is scheduled to launch no earlier than 2023.
- Redwire’s Trailblazing OSAM-2 Mission Passes Critical NASA Milestone.
Relativity Space page at Factories in Space
- His goal is similar to Elon Musk’s with SpaceX, although Relativity isn’t focused on launching people. Instead, Ellis sees Relativity helping build on Mars by initially sending a small 3D-printer for “the first object manufactured on another planet by humanity,” which is “the future that we’re going towards.”
- To Ellis, additive manufacturing is “inevitably required to build an industrial base on Mars.
Relativity Space submitted a proposal for NASA's Commercial Space Station CLD Program. The company had not disclosed plans for a commercial space station and the source selection statement offers few details beyond a “reusable and returnable lab with a return capability.” Tim Ellis, chief executive of Relativity, told SpaceNews Jan. 31 that the company has a “very early concept” on how the upper stage of its Terran R vehicle could be used as a commercial LEO destination, but declined to go into details.
Rhea Space Activity (RSA) page at Factories in Space
- The mirror would be installed, in orbit, into a telescope that would be used to detect hypersonic vehicles.
- Lunar Resources is an in-space manufacturing company that helped RSA develop the concept for how to construct a very large EO/IR mirror in space. O
- ne of the payloads would “spray paint” the optical coatings needed to make the EO/IR mirror on a small satellite dubbed Ruby Sky.
- At the Space Pitch Day event, the Air Force awarded Lunar Resources a $750,000 Small Business Innovation Research (SBIR) Phase 2 contract, with RSA as a subcontractor, to get the project moving.
Rhea Space Activity to develop cislunar space ‘dashboard’ for U.S. Air Force.
RUBY SKY
The RUBY SKY initiative is a ground-breaking, first-of-its-kind project designed to aid the United States and its allies in the detection of “hypersonics,” as near-peer competitors move rapidly toward the development and deployment of hypersonic missile capabilities. Hypersonics represent one of the greatest strategic threats facing the U.S. and its Five Eyes, NATO and Pacific-region partners, and the U.S. defense and intelligence establishments have lauded RSA’s RUBY SKY as a viable, efficient and holistic solution to this looming international challenge.
**The RUBY SKY project functionally and completely envisions a holistic solution to the hypersonic threat, starting with an innovative space-based optical manufacturing process, combined with origami-like structures to detect hypersonic vehicles within a small-satellite form factor. **
The aim of RUBY SKY is to cast the brightest of ‘spotlights’ over vulnerable global spots, including near-peer competitor launch areas that are otherwise dark. In time, the greatest advantage of the RUBY SKY project will be to completely nullify any strategic advantage provided to U.S. near-peer competitors by hypersonic vehicles.
JAM: Jervis Autonomy Module
LUNINT
Space Applications Services page at Factories in Space
Study for Skybeam: Assembly of a Space Solar Power system with European Technologies.
Tethers Unlimited (ARKA, Amergint Technology) page at Factories in Space
Refabricator
Demonstrate in-space recycling and manufacturing to support long-duration manned space missions.
Payload called the Refabricator™ combines a plastic recycling system with a 3D printer to enable astronauts to recycle plastic waste into high-quality 3D printer filament, and then use that filament to fabricate new parts, medical implements, food utensils, and other items that the astronauts need to maintain their spacecraft and perform their missions.
SpiderFab
Developing a suite of technologies called "SpiderFab" to enable on-orbit fabrication of large spacecraft components such as antennas, solar panels, trusses, and other multifunctional structures. This includes Trusselator to create lengthy carbon composite structures and OrbWeaver to create satellite antenna.
KRAKEN
In-Space Servicing
In-Space Manufacturing
In-Space Assembly
In-Space Networking
TGV Rockets page at Factories in Space
A merchant supplier of liquid propulsion to the Small Launch and Small Satellite Community,
TGV Rockets is hoping to demonstrate the use of Ultrasonic AM (UAM) for the repair of a damaged structure or to build a new one.
ThinkOrbital (Think Orbital) page at Factories in Space
Proposals from three relatively unknown companies — Maverick Space Systems, Orbital Assembly Company and ThinkOrbital — received “red” scores for both technical and business, while a fourth, Space Villages, received a red technical score and a yellow business score.
United Space Structures page at Factories in Space
As of early 2023, the 4 listed fields on the website are:
Our mission is to build a large self-sustaining facility that will house hundreds of people and to start construction by 2026. United Space Structures (USS) has developed a unique construction process for building very large permanent structures within lunar lava tubes. The advantage of building within lava tubes is that the lava tube provides protection from radiation and meteor strikes and so the habitat structure does not require to be hardened from these elements. The structures only need to create an atmospheric structurally stable enclosure that is thermally insulated.
A robotics company for manufacturing and construction in space using 3D printing/additive manufacturing.
Earthly Solution Risk
Low as they will stay in space and deployables and fairing sizes have limits.